29
OCT

Moduli Spaces of Riemannian Metrics with Positive Scalar Curvature on Topological Spherical Space Forms

Conférence
Académique ou spécialiste
29.10.2019 13:15
Présentiel

Let $M$ be a spherical space form of dimension at least 5 which is not simply-connected. Then the moduli space of Riemannian metrics with positive scalar curvature on $M$ has infinitely many path components as shown by Boris Botvinnik and Peter B. Gilkey in 1996. We will review this theorem which involves twisted spin structures, suitable bordism groups and eta invariants. We then show that it can be generalized to the class of topological spherical space forms, i.e. smooth manifolds whose universal cover is a homotopy sphere.
Quand?
29.10.2019 13:15
Où?
Site PER 12 / Salle Salle Math II (Lonza)
Chemin du Musée 23, 1700 Fribourg
Organisation
Research seminar on topology
anand.dessai@unifr.ch
Intervenants
Philipp Reiser (Karlsruhe)
Retour à la liste
«juin 2025»
lmamejvsd
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456