18
MAI
MAI
ARCH: Know What Your Machine Doesn’t Know
Kolloquium / Kongress / Forum
Breite Öffentlichkeit
18.05.2022 16:00
Präsenzveranstaltung
Despite their impressive performance, machine learning systems remain prohibitively unreliable in safety-, trust-, and ethically sensitive domains. Recent discussions in different sub-fields of AI have reached the consensus of knowledge need in machine learning; few discussions have touched upon the diagnosis of what knowledge is needed. In this talk, I will present our ongoing work on ARCH, a knowledge-driven, human-centered, and reasoning-based tool, for diagnosing the unknowns of a machine learning system. ARCH leverages human intelligence to create domain knowledge required for a given task and to describe the internal behavior of a machine learning system; it infers the missing or incorrect knowledge of the system with the built-in probabilistic, abductive reasoning engine. ARCH is a generic tool that can be applied to machine learning in different contexts. In the talk, I will present several applications in which ARCH is currently being developed and tested, including health, finance, transport, and e-commerce.
Wann?
18.05.2022 16:00
Wo?
Organisation
Département d'Informatique
Stéphanie Fasel
stephanie.fasel@unifr.ch
Bd de Pérolles 90
1700 Fribourg
0263008322
Stéphanie Fasel
stephanie.fasel@unifr.ch
Bd de Pérolles 90
1700 Fribourg
0263008322
Vortragende / Mitwirkende
Asst. Prof. Jie Yang, TU Delft, Netherlands
Anhänge
Zurück zur Liste
« | Mai 2025 | » | ||||
---|---|---|---|---|---|---|
Mo | Di | Mi | Do | Fr | Sa | So |
28 | 29 | 30 | 1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |