Giving Chemistry Direction

Prof David A. Leigh
Department of Chemistry, University of Manchester, UK
(David.Leigh@manchester.ac.uk; @ProfDaveLeigh; http://www.catenane.net)

In recent years examples of synthetic molecular machines and motors1 have been developed,2 all be they primitive by biological standards. Such molecules are best designed to work through statistical mechanisms. In a manner reminiscent of Maxwell’s Demon,3 random thermal motion is rectified through ratchet mechanisms,3-8 giving chemistry direction.

It is increasingly being recognised that similar concepts can be applied to other chemical exchange processes.9 Ratchet mechanisms—effectively chemical engines10 in which catalysis4,6,7 of ‘fuel’ to ‘waste’ is used to drive another chemical process—can cause directional impetus in what are otherwise stochastic systems, including reversible chemical reactions. This is ushering in a new era of non-equilibrium chemistry, providing fundamental advances in functional molecule design and the first examples of molecular robotics,11,12 overturning existing dogma and offering fresh insights into biology and molecular nanotechnology.

For a musical introduction, see ‘Nanobot’: https://bit.ly/2M5Zwdl